这是描述信息
兆易创新GD32-GigaDevice-兆易创新代理

兆易创新GD32F205ZET6-GD32 ARM Cortex-M3 Microcontroller

兆易创新GD32F205ZET6-GD32 ARM Cortex-M3 Microcontroller GigaDevice Semiconductor Inc. GD32F205xx ARM® Cortex®-M3 32-bit MCU Datasheet General description The GD32F205xx device belongs to the performance line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M3 RISC core with best cost-performance ratio in terms of processing capacity, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support. The GD32F205xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating at 120 MHz frequency with flash accesses zero wait states to obtain maximum efficiency. It provides up to 3072 KB on-chip flash memory and 256 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit 2 MSPS ADCs, two 12-bit DACs, up to ten 16-bit general timers, two 16-bit basic timers plus two 16-bit PWM advanced timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, four USARTs and four UARTs, two I2Ss, two CANs, a SDIO, a USBFS. Additional peripherals as TFT-LCD Interface (TLI) and EXMC interface with SDRAM extension support are included. The device operates from a 2.6 to 3.6V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization of power consumption, an especially important consideration in low power applications. The above features make GD32F205xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, embedded modules, human machine interface, security and alarm systems, automotive navigation and so on. Device information Table 2-1. GD32F205xx devices features and peripheral list   Part Number GD32F205xx   RC RE RG RK VC VE VG VK Flash Fast area (KB) 256 512 384 384 256 512 384 384   Normal area (KB) 0 0 640 2688 0 0 640 2688   Total (KB) 256 512 1024 3072 256 512 1024 3072 SRAM (KB) 128 128 256 256 128 128 256 256 Timers General timer (16-bit) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13) 10 (1-4,8-13)   Advanced timer (16-bit) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7) 2 (0,7)   SysTick 1 1 1 1 1 1 1 1   Basic timer (16- bit) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6) 2 (5,6)   Watchdog 2 2 2 2 2 2 2 2   RTC 1 1 1 1 1 1 1 1 Connectivity USART 4 4 4 4 4 4 4 4     UART 2 (3-4) 2 (3-4) 2 (3-4) 2 (3-4) 4 (3-4,6-7) 4 (3-4,6-7) 4 (3-4,6-7) 4 (3-4,6-7)   I2C 3 3 3 3 3 3 3 3     SPI/I2S 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2) 3/2 (0-2)/(1-2)   SDIO 1 1 1 1 1 1 1 1
兆易创新GD32-GigaDevice-兆易创新代理
产品描述

兆易创新GD32F205ZET6-GD32 ARM Cortex-M3 Microcontroller

GigaDevice Semiconductor Inc.
GD32F205xx
ARM® Cortex®-M3 32-bit MCU
Datasheet

General description

The GD32F205xx device belongs to the performance line of GD32 MCU Family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M3 RISC core with best cost-performance ratio in terms of processing capacity, reduced power consumption and peripheral set. The Cortex®-M3 is a next generation processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.
The GD32F205xx device incorporates the ARM® Cortex®-M3 32-bit processor core operating at 120 MHz frequency with flash accesses zero wait states to obtain maximum efficiency. It provides up to 3072 KB on-chip flash memory and 256 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer up to three 12-bit 2 MSPS ADCs, two 12-bit DACs, up to ten 16-bit general timers, two 16-bit basic timers plus two 16-bit PWM advanced timers, as well as standard and advanced communication interfaces: up to three SPIs, three I2Cs, four USARTs and four UARTs, two I2Ss, two CANs, a SDIO, a USBFS. Additional peripherals as TFT-LCD Interface (TLI) and EXMC interface with SDRAM extension support are included.
The device operates from a 2.6 to 3.6V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization of power consumption, an especially important consideration in low power applications.
The above features make GD32F205xx devices suitable for a wide range of interconnection and advanced applications, especially in areas such as industrial control, consumer and handheld equipment, embedded modules, human machine interface, security and alarm systems, automotive navigation and so on.

Device information

Table 2-1. GD32F205xx devices features and peripheral list

 

Part Number

GD32F205xx

 

RC

RE

RG

RK

VC

VE

VG

VK

Flash

Fast area (KB)

256

512

384

384

256

512

384

384

 

Normal area (KB)

0

0

640

2688

0

0

640

2688

 

Total (KB)

256

512

1024

3072

256

512

1024

3072

SRAM (KB)

128

128

256

256

128

128

256

256

Timers

General timer

(16-bit)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced timer

(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

1

1

1

1

 

Basic timer (16-

bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

Connectivity

USART

4

4

4

4

4

4

4

4

 

 

UART

2

(3-4)

2

(3-4)

2

(3-4)

2

(3-4)

4

(3-4,6-7)

4

(3-4,6-7)

4

(3-4,6-7)

4

(3-4,6-7)

 

I2C

3

3

3

3

3

3

3

3

 

 

SPI/I2S

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

SDIO

1

1

1

1

1

1

1

1

 

CAN

2

2

2

2

2

2

2

2

 

USBFS

1

1

1

1

1

1

1

1

 

TLI

0

0

0

0

1

1

1

1

GPIO

51

51

51

51

82

82

82

82

EXMC/SDRAM

0/0

0/0

0/0

0/0

1/0

1/0

1/0

1/0

ADC (CHs)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

3(16)

DAC

2

2

2

2

2

2

2

2

 

 

Part Number

GD32F205xx

 

ZC

ZE

ZG

ZK

Flash

Code area (KB)

256

512

384

384

 

Data area (KB)

0

0

640

2688

 

Total (KB)

256

512

1024

3072

SRAM (KB)

128

128

256

256

Timers

General timer (16-

bit)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

10

(1-4,8-13)

 

Advanced timer

(16-bit)

2

(0,7)

2

(0,7)

2

(0,7)

2

(0,7)

 

SysTick

1

1

1

1

 

Basic timer (16-

bit)

2

(5,6)

2

(5,6)

2

(5,6)

2

(5,6)

 

Watchdog(16-bit)

2

2

2

2

 

RTC

1

1

1

1

Connectivity

USART

4

4

4

4

 

UART

4

4

4

4

 

I2C

3

3

3

3

 

 

SPI/I2S

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

3/2

(0-2)/(1-2)

 

SDIO

1

1

1

1

 

CAN

2

2

2

2

 

USBFS

1

1

1

1

 

TLI

1

1

1

1

GPIO

114

114

114

114

EXMC/SDRAM

1/1

1/1

1/1

1/1

ADC (CHs)

3(24)

3(24)

3(24)

3(24)

DAC

2

2

2

2

Package

LQFP144

 

Memory map

Table 2-2 GD32F205xx memory map

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

External Device

 

 

 

AHB

0xC000 0000 - 0xDFFF FFFF

EXMC - SDRAM

 

 

0xA000 1000 - 0xBFFF FFFF

Reserved

 

 

0xA000 0000 - 0xA000 0FFF

EXMC - SWREG

 

External RAM

 

0x9000 0000 - 0x9FFF FFFF

EXMC - PC CARD

 

 

0x7000 0000 - 0x8FFF FFFF

EXMC - NAND

 

 

0x6000 0000 - 0x6FFF FFFF

EXMC - NOR/PSRAM/SRAM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral

AHB2

0x5004 0000 - 0x5FFF FFFF

Reserved

 

 

 

 

 

 

 

AHB1

0x5000 0000 - 0x5003 FFFF

USBFS

 

 

0x4002 3400 - 0x4FFF FFFF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2400 - 0x4002 2FFF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1400 - 0x4002 1FFF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0800 - 0x4002 0FFF

Reserved

 

 

0x4002 0400 - 0x4002 07FF

DMA0

 

 

0x4002 0000 - 0x4002 03FF

DMA1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 8400 - 0x4001 FFFF

Reserved

 

 

0x4001 8000 - 0x4001 83FF

SDIO

 

 

0x4001 7800 - 0x4001 7FFF

Reserved

 

 

0x4001 7400 - 0x4001 77FF

GPIOH

 

 

0x4001 7000 - 0x4001 73FF

USART5

 

 

0x4001 6C00 - 0x4001 6FFF

Reserved

 

 

0x4001 6800 - 0x4001 6BFF

TLI

 

 

0x4001 5800 - 0x4001 67FF

Reserved

 

 

0x4001 5400 - 0x4001 57FF

TIMER10

 

 

0x4001 5000 - 0x4001 53FF

TIMER9

 

 

0x4001 4C00 - 0x4001 4FFF

TIMER8

 

 

0x4001 4000 - 0x4001 4BFF

Reserved

 

 

0x4001 3C00 - 0x4001 3FFF

ADC2

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

TIMER7

 

 

0x4001 3000 - 0x4001 33FF

SPI0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

ADC1

 

 

0x4001 2400 - 0x4001 27FF

ADC0

 

 

0x4001 2000 - 0x4001 23FF

GPIOG

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4001 1C00 - 0x4001 1FFF

GPIOF

 

 

0x4001 1800 - 0x4001 1BFF

GPIOE

 

 

0x4001 1400 - 0x4001 17FF

GPIOD

 

 

0x4001 1000 - 0x4001 13FF

GPIOC

 

 

0x4001 0C00 - 0x4001 0FFF

GPIOB

 

 

0x4001 0800 - 0x4001 0BFF

GPIOA

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

AFIO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 C400 - 0x4000 FFFF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

I2C2

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

UART7

 

 

0x4000 7800 - 0x4000 7BFF

UART6

 

 

0x4000 7400 - 0x4000 77FF

DAC

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6C00 - 0x4000 6FFF

BKP

 

 

0x4000 6800 - 0x4000 6BFF

CAN1

 

 

0x4000 6400 - 0x4000 67FF

CAN0

 

 

0x4000 5C00 - 0x4000 63FF

USBFS/CAN shared

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 5000 - 0x4000 53FF

UART4

 

 

0x4000 4C00 - 0x4000 4FFF

UART3

 

 

0x4000 4800 - 0x4000 4BFF

USART2

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

SPI2/I2S2

 

 

0x4000 3800 - 0x4000 3BFF

SPI1/I2S1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1C00 - 0x4000 1FFF

TIMER12

 

 

0x4000 1800 - 0x4000 1BFF

TIMER11

 

 

0x4000 1400 - 0x4000 17FF

TIMER6

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0C00 - 0x4000 0FFF

TIMER4

 

 

0x4000 0800 - 0x4000 0BFF

TIMER3

 

Pre-defined

Regions

 

Bus

 

Address

 

Peripherals

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

TIMER1

 

 

SRAM

 

 

AHB

0x2004 0000 - 0x3FFF FFFF

Reserved

 

 

0x2002 0000 - 0x2003 FFFF

SRAM2(128KB)

 

 

0x2001 C000 - 0x2001 FFFF

SRAM1(16KB)

 

 

0x2000 0000 - 0x2001 BFFF

SRAM0(112KB)

 

 

 

 

 

Code

 

 

 

 

 

AHB

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option Bytes

 

 

0x1FFF B000 - 0x1FFF F7FF

System memory

 

 

0x0830 0000 - 0x1FFF AFFF

Reserved

 

 

0x0800 0000 - 0x082F FFFF

Main flash(3072KB)

 

 

 

0x0000 0000 - 0x07FF FFFF

Aliased to flash or system memory according to BOOT

pins configuration

 

GD32F205Zx LQFP144 pin definitions


Table 2-3. GD32F205Zx LQFP144 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PE2

 

1

 

I/O

 

5VT

Default: PE2

Alternate: TRACECK, EXMC_A23

 

PE3

 

2

 

I/O

 

5VT

Default: PE3

Alternate: TRACED0, EXMC_A19

 

PE4

 

3

 

I/O

 

5VT

Default: PE4 Alternate:TRACED1, EXMC_A20

Remap: TLI_B0

 

PE5

 

4

 

I/O

 

5VT

Default: PE5

Alternate:TRACED2, EXMC_A21 Remap: TIMER8_CH0, TLI_G0

 

PE6

 

5

 

I/O

 

5VT

Default: PE6

Alternate:TRACED3, EXMC_A22 Remap: TIMER8_CH1, TLI_G1

VBAT

6

P

 

Default: VBAT

PC13-

TAMPER- RTC

 

7

 

I/O

 

 

Default: PC13

Alternate: TAMPER-RTC

PC14- OSC32IN

 

8

 

I/O

 

Default: PC14 Alternate: OSC32IN

PC15- OSC32OUT

 

9

 

I/O

 

Default: PC15 Alternate: OSC32OUT

 

PF0

 

10

 

I/O

 

5VT

Default: PF0

Alternate: EXMC_A0 Remap: I2C1_SDA

 

PF1

 

11

 

I/O

 

5VT

Default: PF1

Alternate: EXMC_A1 Remap: I2C1_SCL

 

PF2

 

12

 

I/O

 

5VT

Default: PF2

Alternate: EXMC_A2 Remap: I2C1_SMBA

 

PF3

 

13

 

I/O

 

5VT

Default: PF3

Alternate: EXMC_A3, ADC2_IN9

 

PF4

 

14

 

I/O

 

5VT

Default: PF4

Alternate: EXMC_A4, ADC2_IN14

 

PF5

 

15

 

I/O

 

5VT

Default: PF5

Alternate: EXMC_A5, ADC2_IN15

VSS_5

16

P

 

Default: VSS_5

VDD_5

17

P

 

Default: VDD_5

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Default: PF6

PF6

18

I/O

 

Alternate: ADC2_IN4, EXMC_NIORD

 

 

 

 

Remap: TIMER9_CH0, UART6_RX

 

 

 

 

Default: PF7

PF7

19

I/O

 

Alternate: ADC2_IN5, EXMC_NREG

 

 

 

 

Remap: TIMER10_CH0, UART6_TX

 

 

 

 

Default: PF8

PF8

20

I/O

 

Alternate: ADC2_IN6, EXMC_NIOWR

 

 

 

 

Remap: TIMER12_CH0

 

 

 

 

Default: PF9

PF9

21

I/O

 

Alternate: ADC2_IN7, EXMC_CD

 

 

 

 

Remap: TIMER13_CH0

 

 

 

 

Default: PF10

PF10

22

I/O

 

Alternate: ADC2_IN8, EXMC_INTR

 

 

 

 

Remap: TLI_DE

 

OSCIN

 

23

 

I

 

Default: OSCIN

Remap: PH0

 

OSCOUT

 

24

 

O

 

Default: OSCOUT

Remap: PH1

NRST

25

I/O

 

Default: NRST

 

 

 

 

Default: PC0

PC0

26

I/O

 

Alternate: ADC012_IN10

 

 

 

 

Remap: EXMC_SDNWE

 

PC1

 

27

 

I/O

 

Default: PC1

Alternate: ADC012_IN11

 

 

 

 

Default: PC2

PC2

28

I/O

 

Alternate: ADC012_IN12

 

 

 

 

Remap: EXMC_SDNE0, SPI1_MISO

 

 

 

 

Default: PC3

PC3

29

I/O

 

Alternate: ADC012_IN13

 

 

 

 

Remap: EXMC_SDCKE0, SPI1_MOSI, I2S1_SD

VSSA

30

P

 

Default: VSSA

VREF-

31

P

 

Default: VREF-

VREF+

32

P

 

Default: VREF+

VDDA

33

P

 

Default: VDDA

 

 

 

 

Default: PA0

PA0-WKUP

34

I/O

 

Alternate: WKUP, USART1_CTS, ADC012_IN0,

TIMER1_CH0, TIMER1_ETI, TIMER4_CH0, TIMER7_ETI

 

 

 

 

Remap: UART3_TX

 

 

 

 

Default: PA1

PA1

35

I/O

 

Alternate: USART1_RTS, ADC012_IN1, TIMER1_CH1,

TIMER4_CH1

 

 

 

 

Remap: UART3_RX

 

PA2

 

36

 

I/O

 

Default: PA2

Alternate: USART1_TX, ADC012_IN2, TIMER1_CH2,

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

TIMER4_CH2, TIMER8_CH0, SPI0_IO3

 

 

 

 

Default: PA3

PA3

37

I/O

 

Alternate: USART1_RX, ADC012_IN3, TIMER1_CH3,

TIMER4_CH3, TIMER8_CH1, SPI0_IO4

 

 

 

 

Remap: TLI_B5

VSS_4

38

P

 

Default: VSS_4

VDD_4

39

P

 

Default: VDD_4

 

 

 

 

Default: PA4

PA4

40

I/O

 

Alternate: SPI0_NSS, USART1_CK, DAC_OUT0,

ADC01_IN4

 

 

 

 

Remap: SPI2_NSS, I2S2_WS, TLI_VSYNC

 

 

 

 

Default: PA5

PA5

41

I/O

 

Alternate: SPI0_SCK, ADC01_IN5, DAC_OUT1

 

 

 

 

Remap: TIMER1_CH0, TIMER1_ETI, TIMER7_CH0_ON

 

 

 

 

Default: PA6

PA6

42

I/O

 

Alternate: SPI0_MISO, ADC01_IN6, TIMER2_CH0,

TIMER7_BRKIN, TIMER12_CH0

 

 

 

 

Remap: TIMER0_BRKIN, TLI_G2

 

 

 

 

Default: PA7

PA7

43

I/O

 

Alternate: SPI0_MOSI, ADC01_IN7, TIMER2_CH1,

TIMER7_CH0_ON, TIMER13_CH0

 

 

 

 

Remap: TIMER0_CH0_ON

 

PC4

 

44

 

I/O

 

Default: PC4

Alternate: ADC01_IN14

 

PC5

 

45

 

I/O

 

Default: PC5

Alternate: ADC01_IN15

 

 

 

 

Default: PB0

PB0

46

I/O

 

Alternate: ADC01_IN8, TIMER2_CH2, TIMER7_CH1_ON

 

 

 

 

Remap: TIMER0_CH1_ON, TLI_R3

 

 

 

 

Default: PB1

PB1

47

I/O

 

Alternate: ADC01_IN9, TIMER2_CH3, TIMER7_CH2_ON

 

 

 

 

Remap: TIMER0_CH2_ON, TLI_R6

PB2

48

I/O

5VT

Default: PB2, BOOT1

 

PF11

 

49

 

I/O

 

5VT

Default: PF11

Alternate: EXMC_NIOS16, EXMC_SDNRAS

 

PF12

 

50

 

I/O

 

5VT

Default: PF12

Alternate: EXMC_A6

VSS_6

51

P

 

Default: VSS_6

VDD_6

52

P

 

Default: VDD_6

 

PF13

 

53

 

I/O

 

5VT

Default: PF13

Alternate: EXMC_A7

 

PF14

 

54

 

I/O

 

5VT

Default: PF14

Alternate: EXMC_A8

 

PF15

 

55

 

I/O

 

5VT

Default: PF15

Alternate: EXMC_A9

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PG0

 

56

 

I/O

 

5VT

Default: PG0

Alternate: EXMC_A10

 

PG1

 

57

 

I/O

 

5VT

Default: PG1

Alternate: EXMC_A11

 

PE7

 

58

 

I/O

 

5VT

Default: PE7

Alternate: EXMC_D4, UART6_RX Remap: TIMER0_ETI

 

PE8

 

59

 

I/O

 

5VT

Default: PE8

Alternate: EXMC_D5, UART6_TX Remap: TIMER0_CH0_ON

 

PE9

 

60

 

I/O

 

5VT

Default: PE9

Alternate: EXMC_D6 Remap: TIMER0_CH0

VSS_7

61

P

 

Default: VSS_7

VDD_7

62

P

 

Default: VDD_7

 

PE10

 

63

 

I/O

 

5VT

Default: PE10 Alternate: EXMC_D7

Remap: TIMER0_CH1_ON

 

PE11

 

64

 

I/O

 

5VT

Default: PE11 Alternate: EXMC_D8

Remap: TIMER0_CH1, TLI_G3

 

PE12

 

65

 

I/O

 

5VT

Default: PE12 Alternate: EXMC_D9

Remap: TIMER0_CH2_ON, TLI_B4

 

PE13

 

66

 

I/O

 

5VT

Default: PE13 Alternate: EXMC_D10

Remap: TIMER0_CH2, TLI_DE

 

PE14

 

67

 

I/O

 

5VT

Default: PE14 Alternate: EXMC_D11

Remap: TIMER0_CH3, TLI_PIXCLK

 

PE15

 

68

 

I/O

 

5VT

Default: PE15 Alternate: EXMC_D12

Remap: TIMER0_BRKIN, TLI_R7

 

PB10

 

69

 

I/O

 

5VT

Default: PB10

Alternate: I2C1_SCL, USART2_TX

Remap: TIMER1_CH2, TLI_G4, SPI1_SCK, I2S1_CK

 

PB11

 

70

 

I/O

 

5VT

Default: PB11

Alternate: I2C1_SDA, USART2_RX Remap: TIMER1_CH3, TLI_G5

VSS_1

71

P

 

Default: VSS_1

VDD_1

72

P

 

Default: VDD_1

 

PB12

 

73

 

I/O

 

5VT

Default: PB12

Alternate: SPI1_NSS, I2C1_SMBA, USART2_CK, TIMER0_BRKIN, I2S1_WS, CAN1_RX

PB13

74

I/O

5VT

Default: PB13

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: SPI1_SCK, USART2_CTS, TIMER0_CH0_ON,

I2S1_CK, CAN1_TX

 

PB14

 

75

 

I/O

 

5VT

Default: PB14

Alternate: SPI1_MISO, USART2_RTS, TIMER0_CH1_ON, TIMER11_CH0

 

PB15

 

76

 

I/O

 

5VT

Default: PB15

Alternate: SPI1_MOSI, TIMER0_CH2_ON, I2S1_SD, TIMER11_CH1

 

PD8

 

77

 

I/O

 

5VT

Default: PD8 Alternate: EXMC_D13

Remap: USART2_TX

 

PD9

 

78

 

I/O

 

5VT

Default: PD9

Alternate: EXMC_D14 Remap: USART2_RX

 

PD10

 

79

 

I/O

 

5VT

Default: PD10 Alternate: EXMC_D15

Remap: USART2_CK, TLI_B3

 

PD11

 

80

 

I/O

 

5VT

Default: PD11 Alternate: EXMC_A16

Remap: USART2_CTS

 

PD12

 

81

 

I/O

 

5VT

Default: PD12 Alternate: EXMC_A17

Remap: TIMER3_CH0, USART2_RTS

 

PD13

 

82

 

I/O

 

5VT

Default: PD13 Alternate: EXMC_A18

Remap: TIMER3_CH1

VSS_8

83

P

 

Default: VSS_8

VDD_8

84

P

 

Default: VDD_8

 

PD14

 

85

 

I/O

 

5VT

Default: PD14

Alternate: EXMC_D0 Remap: TIMER3_CH2

 

PD15

 

86

 

I/O

 

5VT

Default: PD15

Alternate: EXMC_D1 Remap: TIMER3_CH3

 

PG2

 

87

 

I/O

 

5VT

Default: PG2

Alternate: EXMC_A12

 

PG3

 

88

 

I/O

 

5VT

Default: PG3

Alternate: EXMC_A13

 

PG4

 

89

 

I/O

 

5VT

Default: PG4

Alternate: EXMC_A14, EXMC_BA0

 

PG5

 

90

 

I/O

 

5VT

Default: PG5

Alternate: EXMC_A15, EXMC_BA1

 

PG6

 

91

 

I/O

 

5VT

Default: PG6

Alternate: EXMC_INT1 Remap:TLI_R7

PG7

92

I/O

5VT

Default: PG7

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: EXMC_INT2

Remap: USART5_CK, TLI_PIXCLK

 

PG8

 

93

 

I/O

 

5VT

Default: PG8

Alternate: EXMC_SDCLK, USART5_RTS

VSS_9

94

P

 

Default: VSS_9

VDD_9

95

P

 

Default: VDD_9

 

 

PC6

 

 

96

 

 

I/O

 

 

5VT

Default: PC6

Alternate: I2S1_MCK, TIMER7_CH0, SDIO_D6, USART5_TX

Remap: TIMER2_CH0, TLI_HSYNC

 

 

PC7

 

 

97

 

 

I/O

 

 

5VT

Default: PC7

Alternate: I2S2_MCK, TIMER7_CH1, SDIO_D7, USART5_RX

Remap: TIMER2_CH1, TLI_G6

 

PC8

 

98

 

I/O

 

5VT

Default: PC8

Alternate: TIMER7_CH2, SDIO_D0, USART5_CK

Remap: TIMER2_CH2

 

PC9

 

99

 

I/O

 

5VT

Default: PC9

Alternate: TIMER7_CH3, SDIO_D, CK_OUT1 Remap: TIMER2_CH3, I2C2_SDA

 

 

PA8

 

 

100

 

 

I/O

 

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT0, VCORE, USBFS_SOF

Remap: TLI_R6, I2C2_SCL

 

PA9

 

101

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, USBFS_VBUS

Remap: I2C2_SMBAI

 

PA10

 

102

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2, USBFS_ID

 

 

PA11

 

 

103

 

 

I/O

 

 

5VT

Default: PA11

Alternate: USART0_CTS, CAN0_RX, USBFS_DM, TIMER0_CH3

Remap: TLI_R4

 

 

PA12

 

 

104

 

 

I/O

 

 

5VT

Default: PA12

Alternate: USART0_RTS, USBFS_DP, CAN0_TX, TIMER0_ETI

Remap: TLI_R5

 

PA13

 

105

 

I/O

 

5VT

Default: JTMS, SWDIO

Remap: PA13

NC

106

 

 

-

VSS_2

107

P

 

Default: VSS_2

VDD_2

108

P

 

Default: VDD_2

 

PA14

 

109

 

I/O

 

5VT

Default: JTCK, SWCLK

Remap: PA14

PA15

110

I/O

5VT

Default: JTDI

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: SPI2_NSS, I2S2_WS

Remap: TIMER1_CH0, TIMER1_ETI, PA15, SPI0_NSS

 

PC10

 

111

 

I/O

 

5VT

Default: PC10

Alternate: UART3_TX, SDIO_D2

Remap: USART2_TX, SPI2_SCK, I2S2_CK, TLI_R2

 

PC11

 

112

 

I/O

 

5VT

Default: PC11

Alternate: UART3_RX, SDIO_D3 Remap: USART2_RX, SPI2_MISO

 

PC12

 

113

 

I/O

 

5VT

Default: PC12

Alternate: UART4_TX, SDIO_CK

Remap: USART2_CK, SPI2_MOSI, I2S2_SD

 

PD0

 

114

 

I/O

 

5VT

Default: PD0 Alternate: EXMC_D2

Remap: CAN0_RX, OSCIN

 

PD1

 

115

 

I/O

 

5VT

Default: PD1 Alternate: EXMC_D3

Remap: CAN0_TX, OSCOUT

 

PD2

 

116

 

I/O

 

5VT

Default: PD2

Alternate: TIMER2_ETI, UART4_RX, SDIO_CMD

 

PD3

 

117

 

I/O

 

5VT

Default: PD3 Alternate: EXMC_CLK

Remap: USART1_CTS, TLI_G7, SPI1_SCK, I2S1_CK

 

PD4

 

118

 

I/O

 

5VT

Default: PD4 Alternate: EXMC_NOE

Remap: USART1_RTS

 

PD5

 

119

 

I/O

 

5VT

Default: PD5

Alternate: EXMC_NWE Remap: USART1_TX

VSS_10

120

 

 

Default: VSS_10

VDD_10

121

 

 

Default: VDD_10

 

PD6

 

122

 

I/O

 

5VT

Default: PD6

Alternate: EXMC_NWAIT

Remap: USART1_RX, TLI_B2, SPI2_MOSI, I2S2_SD

 

PD7

 

123

 

I/O

 

5VT

Default: PD7

Alternate: EXMC_NE0, EXMC_NCE1 Remap: USART1_CK

 

PG9

 

124

 

I/O

 

5VT

Default: PG9

Alternate: EXMC_NE1, EXMC_NCE2 Remap: USART5_RX

 

PG10

 

125

 

I/O

 

5VT

Default: PG10

Alternate: EXMC_NCE3_0, EXMC_NE2 Remap: TLI_G3, TLI_B2

 

PG11

 

126

 

I/O

 

5VT

Default: PG11

Alternate: EXMC_NCE3_1 Remap: TLI_B3

PG12

127

I/O

5VT

Default: PG12

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: EXMC_NE3

Remap: USART5_RTS, TLI_B4, TLI_B1

 

PG13

 

128

 

I/O

 

5VT

Default: PG13

Alternate: EXMC_A24 Remap: USART5_CTS

 

PG14

 

129

 

I/O

 

5VT

Default: PG14 Alternate: EXMC_A25

Remap: USART5_TX

VSS_11

130

P

 

Default: VSS_10

VDD_11

131

P

 

Default: VDD_10

PG15

132

I/O

5VT

Default: PG15

Alternate: EXMC_SDNCAS, USART5_CTS

 

PB3

 

133

 

I/O

 

5VT

Default: JTDO Alternate:SPI2_SCK, I2S2_CK

Remap: PB3, TRACESWO, TIMER1_CH1, SPI0_SCK

 

PB4

 

134

 

I/O

 

5VT

Default: JNTRST Alternate: SPI2_MISO

Remap: TIMER2_CH0, PB4, SPI0_MISO

 

 

PB5

 

 

135

 

 

I/O

 

Default: PB5

Alternate: I2C0_SMBA, SPI2_MOSI, I2S2_SD Remap: TIMER2_CH1, SPI0_MOSI, CAN1_RX,

EXMC_SDCKE1

 

 

PB6

 

 

136

 

 

I/O

 

 

5VT

Default: PB6

Alternate: I2C0_SCL, TIMER3_CH0

Remap: USART0_TX, CAN1_TX, EXMC_SDNE1, SPI0_IO3

 

PB7

 

137

 

I/O

 

5VT

Default: PB7

Alternate: I2C0_SDA , TIMER3_CH1, EXMC_NL Remap: USART0_RX, SPI0_IO4

BOOT0

138

I

 

Default: BOOT0

 

PB8

 

139

 

I/O

 

5VT

Default: PB8

Alternate: TIMER3_CH2, TIMER9_CH0, SDIO_D4 Remap: I2C0_SCL, CAN0_RX, TLI_B6

 

 

PB9

 

 

140

 

 

I/O

 

 

5VT

Default: PB9

Alternate: TIMER3_CH3, TIMER10_CH0, SDIO_D5 Remap: I2C0_SDA, CAN0_TX, TLI_B7, SPI1_NSS,

I2S1_WS

PE0

141

I/O

5VT

Default: PE0

Alternate: TIMER3_ETI, EXMC_NBL0, UART7_RX

 

PE1

 

142

 

I/O

 

5VT

Default: PE1

Alternate: EXMC_NBL1, UART7_TX

VSS_3

143

P

 

Default: VSS_3

VDD_3

144

P

 

Default: VDD_3

Notes:
(1)Type: I = input, O = output, P = power.

(2)I/O Level: 5VT = 5 V tolerant.

ARM® Cortex®-M3 core

The Cortex®-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M3 processor core
Up to 120 MHz operation frequency
Single-cycle multiplication and hardware divider
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M3:
Internal Bus Matrix connected with ICode bus, DCode bus, system bus, Private Peripheral Bus (PPB) and debug accesses (AHB-AP)
Nested Vectored Interrupt Controller (NVIC)
Flash Patch and Breakpoint (FPB)
Data Watchpoint and Trace (DWT)
Instrument Trace Macrocell (ITM)
Memory Protection Unit (MPU)
Serial Wire JTAG Debug Port (SWJ-DP)
Trace Port Interface Unit (TPIU)


On-chip memory

Up to 3072 Kbytes of flash memory, including code flash and data flash
Up to 256 Kbytes of SRAM

The ARM® Cortex®-M3 processor is structured in Harvard architecture which can use separate buses to fetch instructions and load/store data. 3072 Kbytes of inner flash at most, which includes code flash and data flash is available for storing programs and data, and accessed (R/W) at CPU clock speed with zero wait states. Up to 256 Kbytes of inner SRAM is composed of SRAM0, SRAM1, and SRAM2 that can be accessed at same time. Table 2-2 GD32F205xx memory map shows the memory map of the GD32F205xx series of devices, including flash, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 3 to 25 MHz crystal oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
2.6 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB/APB2/APB1 domains is 120/120/60 MHz. See Figure 2-5. GD32F205xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 2.6 V and down to 1.8V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 2.6 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 2.6 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAT range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main flash memory (default)
Boot from system memory
Boot from on-chip SRAM

The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the flash memory by using USART0 (PA9 and PA10), USART1 (PD5 and PD6) and USB (PA9, PA10, PA11 and PA12). It also can be used to transfer and update the flash memory code, the data and the vector table sections. In default condition, boot from bank 0 of flash memory is selected. It also supports to boot from bank 1 of flash memory by setting a bit in option bytes.

3.5.Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, the LVD output, and USB wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC engine with up to 2 MSPS conversion rate
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Conversion range: VSSA to VDDA (2.6 to 3.6 V)
Temperature sensor

Up to three 12-bit 2 MSPS multi-channel ADC are integrated in the device. It is a total of up to 16 multiplexed external channels with 2 internal channels for temperature sensor and voltage reference measurement. The conversion range is between 2.6 V < VDDA < 3.6 V. An on-chip 16-bit hardware oversample scheme improves performances while off-loading the related computational burden from the MCU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block of analog inputs also can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced usages.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timers (TIMER0 and TIMER7) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally

connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

Digital to analog converter (DAC)

12-bit DAC converter of independent output channel
8-bit or 12-bit mode in conjunction with the DMA controller

The 12-bit buffered DAC channel is used to generate variable analog outputs. The DAC is designed with integrated resistor strings structure. The DAC channels can be triggered by the timer update outputs or EXTI with DMA support. The maximum output value of the DAC is VREF+.

DMA

14 channels DMA controller and each channel are configurable (7 for DMA0 and 7 for DMA1)
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs, DAC, I2S and SDIO

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 114 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 114 general purpose I/O pins (GPIO) in GD32F205xx, named PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15, PD0 ~ PD15, PE0 ~ PE15, PF0 ~ PF15, PG0 ~ PG15, PH0 ~
PH1 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull- up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with

digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

Two 16-bit advanced timer (TIMER0 & TIMER7), ten 16-bit general timers (TIMER1 ~ TIMER4, TIMER8 ~ TIMER13), and two 16-bit basic timer (TIMER5 & TIMER6)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0 & TIMER7) can be used as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center-aligned counting modes) and single pulse mode output. If configured as a 16-bit general timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer, known as TIMER1 ~ TIMER4, TIMER8 ~ TIMER13 can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. The general timer is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER1 ~ TIMER4 and TIMER8/TIMER11 also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 & TIMER6, are mainly used for DAC trigger generation. They can also be used as a simple 16-bit time base.
The GD32F205xx have two watchdog peripherals, free watchdog timer and window watchdog timer. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler, it is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog timer is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.

The SysTick timer is dedicated for OS, but could also be used as a standard down counter.

The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC) and backup registers

32-bit up-counter with a programmable 20-bit prescaler
Alarm function
Interrupt and wake-up event
84 bytes backup registers for data protection

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 KHz from external crystal oscillator.
The backup registers are located in the backup domain that remains powered-on by VBAT even if VDD power is shut down, they are forty two 16-bit (84 bytes) registers for data protection of user application data, and the wake-up action from standby mode or system reset do not affect these registers.
In addition, the backup registers can be used to implement the tamper detection, RTC calibration function and waveform detection.

Inter-integrated circuit (I2C)

Up to three I2C bus interfaces can support both master and slave mode with a frequency up to 400 KHz
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode

The I2C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides transfer rate of up to 100 KHz in standard mode and up to 400 KHz in fast mode. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking

for I2C data.


Serial peripheral interface (SPI)

Up to three SPI interfaces with a frequency of up to 30 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Quad wire configuration available in master mode (only in SPI0)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Quad-SPI master mode is also supported in SPI0.

Universal    synchronous/asynchronous    receiver    transmitter (USART/UART)
Up to four USARTs and four UARTs with operating frequency up to 7.5 MHz
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface

The USART (USART0, USART1, USART2, USART5) and UART (UART3, UART4, UART6,
UART7) are used to transmit data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART/UART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART/UART transmitter and receiver. The USART/UART also supports DMA function for high speed data communication.

Inter-IC sound (I2S)

Two I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI1 and SPI2
Support either master or slave mode audio
Sampling frequencies from 8 KHz up to 192 KHz are supported.

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32F205xx contain an I2S-bus interface that can be operated with 16/32-bit resolution in master or slave mode, pin multiplexed with SPI1 and

SPI2. The audio sampling frequencies from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Universal serial bus full-speed interface (USBFS)

One USB device/host full-speed Interface with frequency up to 12 Mbit/s
Internal main PLL for USB CLK compliantly

The Universal Serial Bus (USB) is a 4-wire bus with 4 bidirectional endpoints. The device controller enables 12 Mbit/s data exchange with integrated transceivers in device/host mode. Full-speed peripheral is compliant with the USB 2.0 specification. Transaction formatting is performed by the hardware, including CRC generation and checking. The status of a completed USB transfer or error condition is indicated by status registers. An interrupt is also generated if enabled. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HXTAL crystal oscillator) and the operating frequency divided from APB1 should be 12 MHz above.

Controller area network (CAN)

Two CAN2.0B interface with communication frequency up to 1 Mbit/s
Internal main PLL for CAN CLK compliantly

Controller area network (CAN) is a method for enabling serial communication in field bus. The CAN protocol has been used extensively in industrial automation and automotive applications. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three mailboxes for transmission and two FIFOs of three message deep for reception. It also provides 28 scalable/configurable identifier filter banks for selecting the incoming messages needed and discarding the others.

External memory controller (EXMC)

Supported external memory: SRAM, PSRAM, ROM and NOR-Flash, NAND Flash and PC card, SDRAM with up to 32-bit data bus
Provide ECC calculating hardware module for NAND Flash memory block
Two SDRAM banks with independent configuration, up to 13-bits Row Address, 11-bits Column Address, 2-bits internal banks address
SDRAM Memory size: 4x16Mx32bit(256 MB), 4x16Mx16bit (128 MB), 4x16Mx8bit (64 MB)
External memory controller (EXMC) is an abbreviation of external memory controller. It is divided into several sub-banks for external device support, each sub-bank has its own chip selection signal but at one time, only one bank can be accessed. The EXMC support code execution from external memory except NAND Flash and PC card. The EXMC also can be

configured to interface with the most common LCD module of Motorola 6800 and Intel 8080 series and reduce the system cost and complexity.
The EXMC of GD32F205xx in LQFP144 package also supports synchronous dynamic random access memory (SDRAM). It translates AHB transactions into the appropriate SDRAM protocol, and meanwhile, makes sure the access time requirements of the external SDRAM devices are satisfied.

Secure digital input and output card interface (SDIO)

Support SD2.0/SDIO2.0/MMC4.2 host interface

The Secure Digital Input and Output Card Interface (SDIO) provides access to external SD memory cards specifications version 2.0, SDIO card specification version 2.0 and multi-media card system specification version 4.2 with DMA supported. In addition, this interface is also compliant with CE-ATA digital protocol rev1.1.

TFT LCD interface (TLI)

24-bit RGB Parallel Pixel Output; 8 bits-per-pixel (RGB888)
Supports up to SVGA (800x600) resolution

The TFT LCD interface provides a parallel digital RGB (Red, Green, Blue) and signals for horizontal, vertical synchronization, pixel clock and data enable as output to interface directly to a variety of LCD (Liquid Crystal Display) and TFT (Thin Film Transistor) panels. A built-in DMA engine continuously move data from system memory to TLI and then, output to an external LCD display. Two separate layers are supported in TLI, as well as layer window and blending function.

Debug mode

Serial wire JTAG debug port (SWJ-DP)

The ARM® SWJ-DP Interface is embedded and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Package and operation temperature

LQFP144 (GD32F205Zx), LQFP100 (GD32F205Vx), LQFP64 (GD32F205Rx)
Operation temperature range: -40°C to +85°C (industrial level)

扫二维码用手机看

威尼斯娱人城官网3788.v无线定位测距uwb标签UWB芯片厂商UWB定位公司实现无缝定位的领跑者

在当今数字化世界中,定位技术的重要性越来越被广泛认知和应用。从室内导航到物流跟踪,无线测距UWB芯片的出现为各行各业带来了新的可能性。而在这个充满竞争的领域中,一家名为威尼斯娱人城官网3788.vUWB定位公司的无线定位测距uwb标签UWB芯片厂商,凭借其先进的技术和创新能力,成功成为实现无缝定位的先进者。 UWB(Ultra-Wideband)是一种广泛应用于室内定位和跟踪的无线通信技术。相比传统的定位技术,如GPS或Wi-Fi,UWB具有更高的精度和定位准确性。这一技术利用短脉冲信号的传播时间来计算物体与基站之间的距离,从而实现高精度的定位。 威尼斯娱人城官网3788.vUWB定位公司作为一家专注于UWB技术研发和应用的企业,不仅在无线定位测距uwb标签UWB芯片领域拥有深厚的技术实力,而且在产品研发和市场推广方面也积累了丰富的经验。该公司的核心业务包括UWB芯片的设计、制造、销售和技术支持,并提供完整的解决方案来满足不同行业的需求。 一、UWB芯片的优势和应用 UWB芯片作为实现准确定位和跟踪的关键技术,具有许多优势和广泛应用的潜力。首先,UWB芯片具有高精度的定位能力,可以达到亚厘米级的精度,尤其适用于对位置精度要求高的应用场景。其次,UWB技术在室内环境中的表现出色,能够克服传统技术在室内多路径干扰和信号衰减方面的限制。此外,UWB芯片还能够实现低功耗和高数据传输速率,适用于物流追踪、室内导航、智能家居等领域。 二、威尼斯娱人城官网3788.vUWB定位公司的研发实力和技术创新 威尼斯娱人城官网3788.vUWB定位公司以其突出的研发实力和技术创新能力在行业内独树一帜。该公司拥有一支由工程师和科研人员组成的专业团队,致力于UWB芯片的研发和创新应用。不仅在硬件设计方面有着丰富的经验,还在信号处理算法和定位算法等核心技术上有着深入研究。通过持续的技术创新和研发投入,UWB定位公司不断地提升产品性能,满足市场需求。 三、UWB定位公司的产品与解决方案 威尼斯娱人城官网3788.v作为一家专业的无线定位测距uwb标签UWB芯片厂商,UWB定位公司提供了多款优秀的产品与解决方案。首先,威尼斯娱人城官网3788.v的UWB芯片具有高性能和可靠性,能够满足各行业对定位精度和稳定性的要求。其次,UWB定位公司还提供完善的软件开发工具和技术支持,帮助客户快速集成和开发应用。此外,UWB定位公司还定制化的解决方案,根据客户的具体需求提供全面的技术支持和服务,确保系统的稳定运行和良好的用户体验。 四、UWB定位公司的应用案例 UWB定位公司的产品和解决方案已经成功应用于多个行业,并取得了显著的成果。以下是一些应用案例的介绍: 1. 物流和仓储管理:UWB定位技术可以实时追踪货物的位置和运动轨迹,提高物流效率和准确性。通过在仓库内部安装UWB基站,可以实现对货物的高精度定位,减少货物丢失和误配的情况,提升仓储管理的效率。 2. 室内导航和定位服务:UWB芯片可以用于室内导航和定位服务,帮助人们快速找到目的地并提供导航指引。在商场、机场、医院等场所安装UWB基站,可以提供准确的导航服务,为用户提供更好的体验。 3. 车联网和自动驾驶:UWB技术在车联网和自动驾驶领域也有广泛应用。通过在车辆中安装UWB传感器和芯片,可以实现车辆之间的精准通信和定位,提升驾驶安全性和车辆自主性。 4. 工业制造和机器人:在工业制造和机器人领域,UWB技术可以用于定位和跟踪移动设备和机器人的位置,提高生产效率和自动化水平。通过与其他传感器和系统的结合,可以实现更智能化的制造和操作。 五、未来发展和挑战 威尼斯娱人城官网3788.v作为无线定位测距uwb标签UWB芯片厂商和定位技术提供商,UWB定位公司面临着许多机遇和挑战。随着物联网和人工智能的快速发展,对于精准定位和跟踪的需求将越来越大。UWB技术在室内定位、智能交通、工业制造等领域有着广阔的应用前景。然而,市场竞争激烈,技术要求不断提高,对于UWB定位公司来说,需要不断加强技术研发和创新能力,提供更优秀的产品和解决方案,赢得客户的信任和市场份额。 六、技术合作与生态建设 威尼斯娱人城官网3788.vUWB定位公司在推动技术合作与生态建设方面也取得了显著成绩。他们积极与其他行业的厂商和合作伙伴进行技术交流和合作,共同推动UWB技术的发展和应用。通过与硬件设备生产商、软件开发公司以及系统集成商等的合作,UWB定位公司不仅拓展了产品的应用领域,还实现了技术的互补和资源的共享,加快了技术创新的速度和效果。 七、用户体验与满意度 作为先进的UWB芯片厂商和定位技术提供商,威尼斯娱人城官网3788.vUWB定位公司一直将用户体验和满意度放在优先位置。他们注重产品的易用性和稳定性,在产品设计和功能开发上持续优化,以提供更好的用户体验。同时,UWB定位公司还建立了完善的售后服务体系,及时响应客户的需求和问题,并提供技术支持和解决方案,确保用户能够充分发挥UWB技术的价值和效果,获得满意的使用体验。 八、安全与隐私保护 在定位技术应用的同时,威尼斯娱人城官网3788.vUWB定位公司也重视用户的安全和隐私保护。他们在产品设计和开发中注入了安全机制,采用加密和身份验证等技术手段,确保用户的数据和隐私得到有效保护。同时,UWB定位公司严格遵守相关法规和行业标准,保证数据的合法和合规使用,为用户提供可信赖的定位解决方案。 九、社会责任与可持续发展 作为一家具有社会责任感的企业,威尼斯娱人城官网3788.vuwb标签UWB定位公司积极关注可持续发展和环境保护。他们在生产过程中注重资源的合理利用和能源的节约,致力于减少对环境的影响。同时,UWB定位公司也积极参与社会公益活动,回馈社会,为推动可持续发展和社会进步做出贡献。 总结: 威尼斯娱人城官网3788.vUWB定位公司作为一家先进的无线定位测距uwb标签UWB芯片厂商和解决方案提供商,通过先进的技术研发和创新能力,成功实现了无缝定位的先进地位。他们的产品和解决方案在物流管理、室内导航、车联网、工业制造等领域展现出了巨大的应用潜力和市场前景。同时,UWB定位公司注重用户体验和满意度,积极推动技术合作与生态建设,关注安全与隐私保护,承担社会责任,致力于可持续发展。相信在不久的将来,UWB定位公司将以其先进的技术和卓越的服务,继续引领无线测距UWB芯片领域的发展,为行业和用户带来更多的创新和价值。
点击查看更多
18
2022-02

uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗

发布时间: : 2022-02--18
uA级别智能门锁低功耗雷达模块让门锁更加智能省电节约功耗,指纹门锁并不是什么新鲜事,我相信每个人都很熟悉。随着近年来智能家居的逐步普及,指纹门锁也进入了成千上万的家庭。今天的功耗雷达模块指纹门锁不仅消除了繁琐的钥匙,而且还提供了各种智能功能,uA级别智能门锁低功耗雷达模块用在智能门锁上,可以实现门锁的智能感应屏幕,使电池寿命延长3-5倍,如与其他智能家居连接,成为智能场景的开关。所以今天的指纹门锁更被称为智能门锁。 今天,让我们来谈谈功耗雷达模块智能门锁的安全性。希望能让更多想知道智能门锁的朋友认识下。 指纹识别是智能门锁的核心 指纹识别技术在我们的智能手机上随处可见。从以前的实体指纹识别到屏幕下的指纹识别,可以说指纹识别技术已经相当成熟。指纹识别可以说是整个uA级低功耗雷达模块智能门锁的核心。 目前主要有三种常见的指纹识别方法,即光学指纹识别、半导体指纹识别和超声指纹识别。 光学指纹识别 让我们先谈谈光学指纹识别的原理实际上是光的反射。我们都知道指纹本身是不均匀的。当光照射到我们的指纹上时,它会反射,光接收器可以通过接收反射的光来绘制我们的指纹。就像激光雷达测绘一样。 光学指纹识别通常出现在打卡机上,手机上的屏幕指纹识别技术也使用光学指纹识别。今天的光学指纹识别已经达到了非常快的识别速度。 然而,光学指纹识别有一个缺点,即硬件上的活体识别无法实现,容易被指模破解。通常,活体识别是通过软件算法进行的。如果算法处理不当,很容易翻车。 此外,光学指纹识别也容易受到液体的影响,湿手解锁的成功率也会下降。 超声指纹识别 超声指纹识别也被称为射频指纹识别,其原理与光学类型相似,但超声波使用声波反射,实际上是声纳的缩小版本。因为使用声波,不要担心水折射会降低识别率,所以超声指纹识别可以湿手解锁。然而,超声指纹识别在防破解方面与光学类型一样,不能实现硬件,可以被指模破解,活体识别仍然依赖于算法。 半导体指纹识别 半导体指纹识别主要采用电容、电场(即我们所说的电感)、温度和压力原理来实现指纹图像的收集。当用户将手指放在前面时,皮肤形成电容阵列的极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊柱与谷物之间的距离也不同,因此每个单元的电容量随之变化,从而获得指纹图像。半导体指纹识别具有价格低、体积小、识别率高的优点,因此大多数uA级低功耗雷达模块智能门锁都采用了这种方案。半导体指纹识别的另一个功能是活体识别。传统的硅胶指模无法破解。 当然,这并不意味着半导体可以百分识别活体。所谓的半导体指纹识别活体检测不使用指纹活体体征。本质上,它取决于皮肤的材料特性,这意味着虽然传统的硅胶指模无法破解。 一般来说,无论哪种指纹识别,都有可能被破解,只是说破解的水平。然而,今天的指纹识别,无论是硬件生活识别还是算法生活识别,都相对成熟,很难破解。毕竟,都可以通过支付级别的认证,大大保证安全。 目前,市场上大多数智能门锁仍将保留钥匙孔。除了指纹解锁外,用户还可以用传统钥匙开门。留下钥匙孔的主要目的是在指纹识别故障或智能门锁耗尽时仍有开门的方法。但由于有钥匙孔,它表明它可以通过技术手段解锁。 目前市场上的锁等级可分为A、B、C三个等级,这三个等级主要是通过防暴开锁和防技术开锁的程度来区分的。A级锁要求技术解锁时间不少于1分钟,B级锁要求不少于5分钟。即使是高级别的C级锁也只要求技术解锁时间不少于10分钟。 也就是说,现在市场上大多数门锁,无论是什么级别,在专业的解锁大师面前都糊,只不过是时间长短。 安全是重要的,是否安全增加了人们对uA级别低功耗雷达模块智能门锁安全的担忧。事实上,现在到处都是摄像头,强大的人脸识别,以及移动支付的出现,使家庭现金减少,所有这些都使得入室盗窃的成本急剧上升,近年来各省市的入室盗窃几乎呈悬崖状下降。 换句话说,无论锁有多安全,无论锁有多难打开,都可能比在门口安装摄像头更具威慑力。 因此,担心uA级别低功耗雷达模块智能门锁是否不安全可能意义不大。毕竟,家里的防盗锁可能不安全。我们应该更加关注门锁能给我们带来多少便利。 我们要考虑的是智能门锁的兼容性和通用性。毕竟,智能门锁近年来才流行起来。大多数人在后期将普通机械门锁升级为智能门锁。因此,智能门锁能否与原门兼容是非常重要的。如果不兼容,发现无法安装是一件非常麻烦的事情。 uA级别低功耗雷达模块智能门锁主要是为了避免带钥匙的麻烦。因此,智能门锁的便利性尤为重要。便利性主要体现在指纹的识别率上。手指受伤导致指纹磨损或老年人指纹较浅。智能门锁能否识别是非常重要的。 当然,如果指纹真的失效,是否有其他解锁方案,如密码解锁或NFC解锁。还需要注意密码解锁是否有虚假密码等防窥镜措施。 当然,智能门锁的耐久性也是一个需要特别注意的地方。uA级别低功耗雷达模块智能门锁主要依靠内部电池供电,这就要求智能门锁的耐久性尽可能好,否则经常充电或更换电池会非常麻烦。 智能门锁低功耗雷达模块:让门锁更加智能省电节约功耗 在当今信息化时代,智能门锁已经成为人们生活中不可或缺的一部分。对于门锁制造商来说,如何提高门锁的安全性、实用性和便利性,成为他们面对的重要课题。随着人们对门锁智能化的需求越来越高,门锁的能耗问题也成为了门锁制造商需要重视的问题。为此,越来越多的门锁制造商开始推出以低功耗为主题的系列产品。在这样的背景下,智能门锁低功耗雷达模块应运而生。 智能门锁低功耗雷达模块是一种新型技术,其采取雷达技术对门锁周围的物体进行探测,一旦发现门锁附近有人靠近,便会将门锁自动解锁,无需使用钥匙。同时,在保持智能控制的前提下,实现了门锁省电、节约功耗,延长门锁使用寿命。 在使用智能门锁低功耗雷达模块的门锁中,控制电路和自动解锁机制是关键的部件。控制电路采用先进的芯片技术,通过优秀的功耗控制以实现模块化管理。而自动解锁机制不仅可以通过微波信号控制实现门锁的无钥匙解锁,还能够在门锁未处理的情况下自动锁定,保障门锁的安全。 智能门锁低功耗雷达模块的主要特点是:低功耗、高灵敏度和高可靠性。该模块在进行人体检测时,可以远距离探测到距离为5-7米远处的人体信号,目标检测速度极快,而且对门锁周围的环境要求不高。同时,该模块采用了自适应自动补偿技术,能够根据不同环境的变化自动调整信号发射和接收参数,减小误检率。 在使用智能门锁低功耗雷达模块的门锁中,其功耗可以做到非常低,一组电池能够支持门锁持续使用几年左右。而且这样的智能门锁除了具有自动解锁的功能,还可与APP相互匹配,实现了远程操作的便捷性。 总的来说,智能门锁低功耗雷达模块的问世,解决了门锁安全性和省电节省方面的问题,是智能门锁材料不可或缺的一部分。作为门锁制造商,只有不断创新,利用这种新型技术,将会在行业中占据重要的地位。 除了上文所述的主要特点和优势,智能门锁低功耗雷达模块还具有以下几点: 1. 实时监测门锁周围环境变化,通过物体的距离体积和运动来确定是否有人靠近门锁,并控制门锁的开启或关闭,使得门锁更加智能化。 2. 可对门锁附件进行检测,如门挂、门应急照明灯以及紧急呼叫按钮等,并及时给出响应,确保门锁能够正常运作。这样,门锁在不受干扰的情况下,能够 保持安全通道。 3. 通过智能学习技术,能够自适应网站多种环境的变化,让智能门锁低功耗雷达模块更加准确和精细的控制门锁的开关,节约能耗并延长使用寿命。 4. 能够与其他智能电器相连,如智能家居系统、电视等,形成智能家居生态圈,更好地控制家庭访客进出,让生活更加方便。 综上所述,智能门锁低功耗雷达模块的出现,对提升门锁能耗管理和智能化有着重要作用。门锁制造商只有将这些新型技术运用到门锁产品中,才能更加贴合用户需求,满足消费市场的日益增长的智能化需求。
查看详情 查看详情
14
2022-01

微波雷达传感器雷达感应浴室镜上的应用

发布时间: : 2022-01--14
微波雷达传感器雷达感应浴室镜上的应用,如今,家用电器的智能化已成为一种常态,越来越多的人开始在自己的浴室里安装智能浴室镜。但是还有很多人对智能浴镜的理解还不够深入,今天就来说说这个话题。 什么是智能浴室镜?智慧型浴室镜,顾名思义,就是卫浴镜子智能化升级,入门级产品基本具备了彩灯和镜面触摸功能,更高档次的产品安装有微波雷达传感器智能感应,当感应到有人接近到一定距离即可开启亮灯或者亮屏操作,也可三色无极调,智能除雾,语音交互,日程安排备忘,甚至在镜子上看电视,听音乐,气象预报,问题查询,智能控制,健康管理等。 智能化雷达感应浴室镜与普通镜的区别,为什么要选TA?,就功能而言,普通浴镜价格用它没有什么压力!而且雷达感应智能浴镜会让人犹豫不决是否“值得一看”。就功能和应用而言,普通浴镜功能单一,而微波雷达传感器智能浴室镜功能创新:镜子灯光色温和亮度可以自由调节,镜面还可以湿手触控,智能除雾,既环保又健康! 尽管智能浴镜比较新颖,但功能丰富,体验感更好,特别是入门级的智能浴镜,具有基础智能化功能,真的适合想体验下智能化的小伙伴们。 给卫生间安装微波雷达传感器浴室镜安装注意什么? ①确定智能浴室镜的安装位置,因为是安装时在墙壁上打孔,一旦安装后一般无法移动位置。 ②在选购雷达感应智能浴室镜时,根据安装位置确定镜子的形状和尺寸。 ③确定智能浴镜的安装位置后,在布线时为镜子预留好电源线。 ④确定微波雷达传感器智能浴镜的安装高度,一般智能浴镜的标准安装高度约85cm(从地砖到镜子底),具体安装高度要根据家庭成员的身高及使用习惯来决定。 ⑤镜面遇到污渍,可用酒精或30%清洁稀释液擦洗,平时可用干毛巾养护,注意多通风。
查看详情 查看详情
13
2024-11

超宽带定位中国uwb芯片:创新精准定位新时代

发布时间: : 2024-11--13
随着科技的不断发展,定位技术已经渗透到我们生活的方方面面。近年来,超宽带(Ultra-Wideband,简称UWB)定位技术以其高精度、高速度、高可靠性的优势,逐渐成为定位技术的新宠。而在中国,UWB芯片的研发与生产也取得了长足的进步,为精准定位技术的发展注入了新的活力。本文将深入探讨中国UWB芯片在超宽带定位领域的应用与发展,分析其在市场中的竞争地位,并展望其未来的发展趋势。 一、UWB定位技术概述 UWB定位技术是一种基于窄脉冲的无线载波通信技术,其信号带宽通常超过500MHz。与传统的无线通信技术相比,UWB技术具有更高的时间分辨率和空间分辨率,能够实现厘米级的定位精度。这使得UWB定位技术在室内定位、智能物联网、无人驾驶等领域具有广泛的应用前景。 二、中国UWB芯片的发展现状 近年来,中国UWB芯片产业得到了快速发展。国内众多芯片企业纷纷投入研发力量,推出了一系列具有自主知识产权的UWB芯片产品。这些芯片不仅具有高性能、低功耗的特点,而且在成本上也具有一定的优势,为UWB定位技术的普及和应用提供了有力支持。 同时,政府也高度重视UWB技术的发展,出台了一系列扶持政策,鼓励企业加大研发投入,推动UWB芯片产业的快速发展。在政策的引导下,中国UWB芯片产业逐渐形成了完整的产业链,从芯片设计、制造到封装测试,都具备了较强的实力。 三、UWB芯片在超宽带定位中的应用 室内定位 UWB定位技术在室内环境中的表现尤为出色。由于室内环境复杂多变,传统的GPS等定位技术往往难以实现精准定位。而UWB技术凭借其高精度、高速度的特点,能够轻松应对室内定位的挑战。通过部署UWB基站和标签,可以实现对人员、物品等目标的实时定位与追踪,为智能家居、智慧办公、智能安防等领域提供了有力的支持。 智能物联网 在智能物联网领域,UWB定位技术也发挥着重要作用。通过将UWB芯片集成到各种智能设备中,可以实现设备之间的精准通信与协同工作。这不仅可以提高设备的智能化水平,还可以优化设备间的交互体验,为用户带来更加便捷、高效的生活体验。 无人驾驶 无人驾驶技术是近年来备受关注的热门领域之一。在无人驾驶汽车、无人机等应用场景中,精准定位是实现自动驾驶和安全飞行的关键。UWB定位技术以其高精度、高可靠性的优势,为无人驾驶技术的发展提供了有力支持。通过与其他定位技术的融合应用,可以实现对无人驾驶设备的全方位、多角度的定位与监控,提高系统的安全性和稳定性。 四、中国UWB芯片的市场竞争地位 目前,全球UWB芯片市场呈现出多元化竞争的格局。美国、欧洲等地的企业凭借技术积累和品牌优势,在市场上占据了一定的份额。然而,随着中国UWB芯片产业的快速发展,国内企业在技术、成本等方面逐渐具备了与国际竞争对手抗衡的实力。 在性能方面,中国UWB芯片已经实现了与国际同类产品相当的定位精度和稳定性。在成本方面,由于国内企业在生产规模、供应链等方面的优势,中国UWB芯片的价格更具竞争力。这使得中国UWB芯片在国内外市场上具有较大的吸引力,为国产芯片在全球范围内的推广和应用奠定了基础。 五、中国UWB芯片的未来发展趋势 展望未来,中国UWB芯片产业将继续保持快速发展的势头。随着技术的不断进步和市场的不断拓展,中国UWB芯片将在更多领域得到应用,推动精准定位技术的普及和发展。 一方面,中国UWB芯片将继续提升性能,实现更高的定位精度和更低的功耗。同时,随着5G、物联网等技术的融合发展,UWB芯片将与其他无线通信技术实现更紧密的集成与协同,为用户提供更加全面、高效的定位服务。 另一方面,中国UWB芯片将积拓展国际市场,加强与国际企业的合作与交流。通过引进先进技术和管理经验,不断提升自身的创新能力和竞争力,为全球用户提供更加优质的产品和服务。 总之,中国UWB芯片作为精准定位技术的重要组成部分,已经在多个领域展现出强大的应用潜力。随着技术的不断进步和市场的不断拓展,相信中国UWB芯片将在未来迎来更加广阔的发展前景。
查看详情 查看详情
12
2024-11

低功耗高精度定位UWB手表芯片应用

发布时间: : 2024-11--12
在科技日新月异的今天,定位技术的精度和稳定性对于许多领域都至关重要。超宽带(Ultra-Wideband,简称UWB)技术作为一种新兴的无线通信技术,以其高精度、高速度、低功耗等特性,在定位领域展现出巨大的潜力。特别是在手表芯片应用中,UWB技术为高精度定位提供了新的解决方案。本文将深入探讨高精度定位UWB手表芯片的应用及其优势。 一、UWB技术概述 UWB技术是一种无线载波通信技术,它利用纳秒至微秒级的非正弦波窄脉冲传输数据。由于脉冲窄,因此其所占的频谱范围很宽,并且时间分辨率高。这使得UWB技术具有定位精度高、抗干扰能力强、传输速率快等诸多优点。在短距离无线通信领域,UWB技术已经成为研究的热点,并被广泛应用于室内定位、智能家居、智能穿戴设备等领域。 二、高精度定位UWB手表芯片的特点 高精度定位:UWB技术通过测量信号传输的时间差,可以实现厘米级的定位精度。在手表芯片应用中,这种高精度定位能力使得用户可以更准确地了解自身位置信息,为导航、运动追踪等提供了强大的支持。 低功耗设计:UWB手表芯片采用低功耗设计,能够在保证定位精度的同时,延长手表的使用时间。这对于需要长时间佩戴手表的用户来说,无疑是一个重要的优势。 快速响应:UWB技术的传输速率快,使得手表芯片在接收和发送定位信息时具有短的延迟。这种快速响应的特性,使得UWB手表芯片在实时定位应用中具有显著优势。 抗干扰能力强:UWB信号具有很宽的频谱范围,可以有效避免与其他无线设备的信号干扰。这使得UWB手表芯片在复杂环境中也能保持稳定的定位性能。 三、高精度定位UWB手表芯片的应用场景 户外运动追踪:对于喜欢户外运动的人来说,高精度定位UWB手表芯片可以帮助他们更准确地记录运动轨迹、速度、距离等信息。无论是跑步、骑行还是徒步旅行,用户都可以通过手表实时了解自己的运动状态,为运动训练提供有力的数据支持。 室内导航:在大型商场、医院、机场等室内场所,传统的GPS定位往往无法提供准确的位置信息。而高精度定位UWB手表芯片则可以通过与其他UWB设备的通信,实现室内精准定位。用户可以通过手表轻松找到目的地,提高出行效率。 安全监控:高精度定位UWB手表芯片还可以应用于儿童、老人等特殊人群的安全监控。家长或监护人可以通过手机等终端设备实时了解被监护人的位置信息,确保他们的安全。在紧急情况下,被监护人还可以通过手表发出求助信号,寻求帮助。 智能家居控制:结合智能家居系统,高精度定位UWB手表芯片可以实现对家居设备的精准控制。例如,当用户进入卧室时,手表可以自动将卧室的灯光、空调等设备调整到合适的状态;当用户离开家时,手表可以自动关闭所有电器设备,节省能源。 四、高精度定位UWB手表芯片的发展趋势 智能化发展:随着人工智能技术的不断进步,高精度定位UWB手表芯片将越来越智能化。未来的手表芯片可能会具备更加丰富的功能,如语音控制、健康监测、情感识别等,为用户提供更加便捷、个性化的服务。 多模融合:为了提高定位精度和稳定性,未来的高精度定位UWB手表芯片可能会采用多模融合技术。即结合GPS、蓝牙、Wi-Fi等多种定位技术,实现在不同场景下的精准定位。 微型化设计:随着芯片制造工艺的不断提升,高精度定位UWB手表芯片有望实现更加微型化的设计。这不仅可以减轻手表的重量,还可以为其他功能模块提供更多的空间,使得手表的功能更加丰富多样。 安全性增强:随着网络安全问题的日益突出,高精度定位UWB手表芯片在安全性方面也将得到更多关注。未来的手表芯片可能会采用更加先进的加密技术和安全协议,确保用户数据的安全性和隐私性。 五、结语 高精度定位UWB手表芯片作为一种新兴的定位技术,具有广阔的应用前景和巨大的市场潜力。随着技术的不断进步和应用场景的不断拓展,相信未来UWB手表芯片将在更多领域发挥重要作用,为人们的生活带来更多便利和乐趣。 在撰写本文时,我们深入探讨了高精度定位UWB手表芯片的特点、应用场景以及发展趋势。通过了解这些内容,我们可以对UWB技术在手表芯片应用中的优势和潜力有更清晰的认识。同时,我们也期待未来UWB手表芯片能够在技术、功能、安全性等方面取得更多突破,为用户带来更加优质的使用体验。 当然,我们也应该意识到,任何技术的发展都需要时间和市场的检验。高精度定位UWB手表芯片虽然具有诸多优势,但在实际应用中还需要解决一些技术难题和市场挑战。例如,如何进一步提高定位精度、降低功耗、优化用户体验等问题都需要我们持续关注和努力。 此外,随着物联网、大数据、云计算等技术的快速发展,高精度定位UWB手表芯片也将与这些先进技术相互融合,共同推动智能穿戴设备领域的创新与发展。例如,通过大数据分析,我们可以更深入地了解用户的使用习惯和需求,从而优化手表芯片的功能和性能;通过云计算技术,我们可以实现手表数据的实时同步和备份,确保用户数据的安全性和可靠性。 同时,高精度定位UWB手表芯片的应用也将推动相关产业的发展。随着市场需求的不断增长,芯片制造、智能手表设计、应用开发等相关产业将迎来更多的发展机遇。这将有助于形成更加完善的产业链和生态系统,推动整个行业的繁荣与进步。 然而,我们也应该看到,高精度定位UWB手表芯片的应用还面临着一些挑战和限制。例如,不同品牌、不同型号的UWB设备之间的兼容性问题需要得到解决;此外,随着技术的普及和市场的扩大,如何保障用户数据的安全性和隐私性也是一个亟待解决的问题。因此,我们需要加强技术研发和创新,不断完善和优化高精度定位UWB手表芯片的性能和功能,同时加强数据安全和隐私保护方面的措施。 总之,高精度定位UWB手表芯片作为一种具有巨大潜力的定位技术,将在未来发挥越来越重要的作用。我们应该持续关注其发展趋势和应用场景,加强技术研发和创新,推动其在智能穿戴设备领域的广泛应用和普及。同时,我们也需要关注其面临的挑战和限制,积寻求解决方案,为高精度定位UWB手表芯片的发展创造更加良好的环境和条件。 在未来的发展中,高精度定位UWB手表芯片有望成为智能穿戴设备领域的重要支柱之一。随着技术的不断进步和应用场景的不断拓展,我们将见证更多创新和突破,共同推动智能穿戴设备领域的繁荣与发展。 六、高精度定位UWB手表芯片的挑战与机遇 尽管高精度定位UWB手表芯片具有诸多优势和应用前景,但在实际应用过程中仍面临一些挑战。首先,技术标准的统一和设备的兼容性问题是制约UWB技术广泛应用的关键因素。不同厂商生产的UWB设备在通信协议、信号处理方式等方面存在差异,导致设备之间的互操作性受到限制。因此,制定统一的技术标准和推动设备兼容性问题的解决是高精度定位UWB手表芯片发展中的重要任务。 其次,高精度定位UWB手表芯片的成本问题也是影响其市场推广的一个因素。目前,由于制造工艺、材料成本等方面的限制,高精度定位UWB手表芯片的价格相对较高。这可能导致一些消费者在购买时产生犹豫,限制了其市场规模的扩大。因此,降低制造成本、提高生产效率是推广高精度定位UWB手表芯片的关键之一。 然而,正是这些挑战为高精度定位UWB手表芯片带来了机遇。为了克服技术标准和兼容性问题,各大厂商和研究机构将加强合作,共同推动UWB技术的发展和标准的制定。这将有助于形成一个更加统一、开放的UWB生态系统,为高精度定位UWB手表芯片的应用提供更多可能性。 同时,随着制造工艺的不断改进和成本的降低,高精度定位UWB手表芯片的价格也有望逐渐降低。这将使得更多消费者能够接触到并购买到这一产品,进一步扩大其市场规模。此外,随着人们对智能化、便捷化生活的追求日益增加,高精度定位UWB手表芯片的市场需求也将持续增长。 七、结语 高精度定位UWB手表芯片作为一种具有巨大潜力的定位技术,在智能穿戴设备领域展现出了广阔的应用前景。通过深入探讨其特点、应用场景、发展趋势以及面临的挑战与机遇,我们可以更好地了解这一技术的优势和价值。随着技术的不断进步和市场需求的增长,相信高精度定位UWB手表芯片将在未来发挥更加重要的作用,为人们的生活带来更多便利和创新。同时,我们也需要关注并解决其面临的挑战和问题,为其健康发展创造良好的环境和条件。
查看详情 查看详情
11
2024-11

低延时通信UWB应用芯片:通信技术的新篇章

发布时间: : 2024-11--11
在信息化时代,通信技术作为连接世界的纽带,其重要性不言而喻。近年来,随着物联网、智能穿戴、智能家居等领域的快速发展,对通信技术的要求也越来越高。低延时通信UWB(超宽带)应用芯片,以其独特的优势,正在成为未来通信技术发展的重要方向。 一、UWB技术概述 UWB,即超宽带技术,是一种无线载波通信技术。它利用纳秒至微秒级的非正弦波窄脉冲传输数据,具有带宽宽、传输速度快、功耗低、抗干扰能力强等特点。与传统的无线通信技术相比,UWB技术在数据传输速度、距离和精度等方面都有显著的优势。 二、低延时通信UWB应用芯片的特点 低延时 低延时是UWB技术的一大特点。由于UWB信号采用短的脉冲进行数据传输,因此其传输速度快,延时低。这使得UWB技术在实时通信、精准定位等领域具有广泛的应用前景。 高精度定位 UWB技术的高精度定位能力也是其一大亮点。通过测量信号传输的时间差,可以实现厘米级的定位精度。这一特点使得UWB在智能物流、无人机导航、室内定位等领域具有广泛的应用价值。 高抗干扰性 UWB信号采用宽带传输,具有较强的抗干扰能力。在复杂电磁环境下,UWB技术仍能保持稳定的通信性能,确保数据的可靠传输。 低功耗 UWB芯片采用先进的低功耗设计,使得设备在长时间工作时仍能保持良好的性能。这一特点使得UWB技术在可穿戴设备、物联网等领域具有广泛的应用前景。 三、低延时通信UWB应用芯片的应用领域 实时通信领域 在实时通信领域,低延时通信UWB应用芯片能够提供快速、稳定的数据传输服务。无论是视频通话、在线游戏还是远程医疗等领域,UWB技术都能带来更好的用户体验。例如,在远程医疗领域,低延时的UWB通信可以确保医生实时获取患者的生命体征数据,从而做出更准确的诊断和治疗方案。 精准定位领域 UWB技术的高精度定位能力使得其在精准定位领域具有广泛的应用前景。在智能物流领域,UWB技术可以实现仓库内物品的准确定位和管理,提高物流效率。在无人机导航领域,UWB技术可以实现无人机的精准飞行和避障,提升飞行安全性。此外,在智能家居、安防监控等领域,UWB技术也能发挥重要作用。 物联网领域 物联网作为连接万物的网络,对通信技术的要求高。低延时通信UWB应用芯片凭借其低功耗、高抗干扰性等特点,成为物联网领域的重要选择。在智能穿戴设备、智能家居、智能农业等领域,UWB技术能够实现设备间的快速、稳定连接,推动物联网应用的深入发展。 四、低延时通信UWB应用芯片的发展趋势 技术不断创新 随着科技的不断发展,UWB技术也在不断创新和完善。未来,我们可以期待看到更高速、更低延时、更高精度的UWB通信芯片问世。同时,随着5G、6G等新一代通信技术的融合,UWB技术将实现更广泛的应用场景。 应用场景不断拓宽 随着UWB技术的不断成熟和应用领域的拓宽,其应用场景也将越来越丰富。未来,我们可以预见到UWB技术在自动驾驶、智能交通、智能制造等领域的广泛应用,为社会发展带来更多可能性。 产业生态不断完善 随着UWB技术的普及和应用,相关产业链也将不断完善。芯片制造商、设备厂商、应用开发者等各方将共同推动UWB产业的发展,形成更加完善的产业生态。 五、结语 低延时通信UWB应用芯片作为未来通信技术的重要发展方向,具有广阔的应用前景和巨大的市场潜力。随着技术的不断创新和应用场景的拓宽,UWB技术将在实时通信、精准定位、物联网等领域发挥越来越重要的作用。我们期待着UWB技术为社会发展带来更多创新和变革。 综上所述,低延时通信UWB应用芯片作为一种新型通信技术,以其独特的优势正逐渐改变着我们的生活和工作方式。在未来,我们有理由相信,UWB技术将在更多领域展现出其强大的应用潜力,推动社会科技的进步与发展。作为通信领域的从业者,我们应密切关注UWB技术的发展动态,积探索其应用场景,为推动通信技术的创新发展贡献自己的力量。
查看详情 查看详情
上一页
1
2
...
304

地址:深圳市宝安区西乡街道麻布社区宝安互联网产业基地A区6栋7栋7706

邮箱:Sales@ferry-semi.com

版权所有©2020  威尼斯娱人城官网  粤ICP备2020098907号    威尼斯娱人城官网3788.v科技微波雷达wifi模块网站地图

 

免责声明:本网站部分图片和文字内容可能来源于网络,转载目的在于传递更多信息,并不代表本网站赞同其观点或证实其内容的真实性。如涉及作品内容、版权和其它问题,请在30日内与本网站联系,我们将在第一时间删除内容!本站拥有对此声明的最终解释权。